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ABSTRACT 

The first integration of a 24 x 25 array of processors 

for high speed optimal path planning is reported. Based on 

programmed terrain costs (traversal time), the IC determines, 

in parallel, the fastest routes from a selected starting point(s) 

to all other points on a given tcrrain. The chip has hQen 

successfully tested at a 7 MHz clock frequency, with typical 

path determination requiring 230 l is,  resulting in a four order 

of magnitude speed-up over currmt sofhvare-hasQd shortmt- 

route techniques. 

INTRODUCTION 

For a given terrain to be traversed, it is computationally 

intensive to determine the fastest route between two points, and 

for defense or civilian emergency dispatching applications, 

computation time is critical. This paper reports the integration 

of a 24 x 25 random access array of digital processors which 

are programmed to model a given terrain and determine the 

fastest (lowest cost) path between any points on the terrain at 

very high speed (milliseconds for arrays up to 512 x 512). The 

primary purpose of this research chip is to demonstrate high 

speed path planning capability for tactical mobility analysis in 

battlefield scenarios. However such high speed automated path 

planning will find utility in a variety of settings such as 

autonomous vehicle navigation, intelligent vehicle highway 

systems, evacuation and rescue planning, and police and 

transportation dispatching. 

Currently, the only tools available to assist in path 

planning are iiiplemented in software. These approaches can 
be slow, with best path determination typically requiring 

seconds to minutes for terrain sizes varying from 64 x 64 to 

512 x 512 pixels.' Through the VLSI implementation of a fine 

grain parallel architecture, in which every terrain pixel is 

represented by a corresponding processor, the inherent 

parallelism of the problem can be exploited and extremely fast 

path determination can be realized. In such an architecture, the 

only processor communication required is between nearest 

neighbors so that processor communication overhead is 

virtually eliminated. This is in contrast to conventional parallel 

computers, where even with proper parallel decomposition of 

the problem, processor communication overhead is often a 
severe speed bottleneck. In this paper, the first parallel 

processor IC for route planning over complex terrain is 

reported. 

ARRAY ARCHITECTURE AND OPERATION 

The path planner architecture, shown schematically in 

Fig. 1, consists of a 24 x 25 array of unit cells (processors) 

which communicate with their nearest neighbors and are 

randomly accessed by 5-bit row and column decoders located 

adjacent to the array. The IC is implemented in a single-poly, 

double-metal 2 pm CMOS n-well process, utilizing a full 

custom layout. The overall chip area is 9.2 mm x 7.9 mrn. A 

photograph of the chip is shown in Fig. 2. 

In order to determine the fastest routes from a selected 

starting point(s) to all other points on a given terrain, each unit 

cell corresponds to a terrain pixel which has been 

preprogrammed with the cost (i.e. delay) of traversing that 

pixel. Operation begins with the selection of a path origination 

pixel@) which sends out a signal to its north, south, east and 
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Fig. 1 Block diagram of IC architecture 

Fig. 2 IC photograph. 

west neighbors. Each neighbor delays the signal by a preset 

time (programmable cost), after which it broadcasts a signal to 

each of its four neighbors. One of 256 costs (delays) can be 

selected. When a signal is received, the incoming signal 

direction is stored and further inputs to the cell are disabled. 

This results in a signal wavefront propagating radially outward 

from the originating pixel that is then distorted by the varying 

delays encountered in the array. When signal propagation 

through the entire array is complete, any destination node may 

be queried and the minimum path between it and the 

origination node is found by retracing the direction stored in 

each unit cell. Thus, determination of the fastest paths through 

a complex terrain (modelled by 256 cost levels) is realized. 

This is in contrast to the simpler task of maze solving or wire 

routing, in which the processors would be programmed with 

binary costs, i.e. the pixel is either blocked or open. A 4 x 4 

array of such binary processors and later a 4 x 8 array which 

used the discharge of a capacitor to provide an additional cost 

(blocked, not blocked and slow) have been previously reported.’ 

In addition to the lack of available cost levels, another 

drawback of this approach is the uncontrolled cost 

nonuniformity associated with varying capacitor discharge times 

across the array. In the approach reported here, the all-digital 

implementation leads to perfect cost uniformity across the 

array. 

In addition to finding the fastest paths from one 

origination pixel to all possible destinations, multiple starting 

pixels can be selected, with signal propagation emanating from 

each source and stopping at the boundary between signal 

wavefronts. This feature is useful in battlefield scenarios where 

an analyst can model the progress of different forces across the 

terrain. In addition, when any destination node is queried, the 

minimum path between it and the nearest source pixel is 

displayed, which provides valuable information for rescue 

operations. 

Unit Cell 

In order to implement signal propagation and path 

retracing in the array, each unit cell must perform two main 

functions: programmable delay and storage of the incoming 

direction. The former is implemented with a programmable 

counter and the latter with a set of static latches. A block 

diagram of the unit cell is shown in Fig. 3 and occupies 

296 pm x 330 pm. Signal propagation through the array, 

controlled by variable unit cell delays, is implemented by 

presetting an 8-bit ripple down-counter in each cell to one of 

its 256 possible values. When triggered by an incoming signal 

the counter decrements down to zero that in turn triggers the 

broadcast of an outgoing signal to each of its nearest neighbors. 
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Fig. 3 Block diagram of unit cell processor. 

Each counter stage is based on a static latch configuration, 

shown in Fig. 4. To eliminate the need for an 8-input NAND 

gate, nine (rather than eight) counter stages are utilized to 

achieve the 256 delay resolution. In order to implement the 

path retracing function in the array, four static cross-coupled 

latches are used to store the incoming signal direction. They 

can be read out at any time, even during signal propagation 

through the array. A four input NOR gate is triggered if any 

of the latches are set, that in turn disables the static latches 

from receiving further input. 

Set 
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Fig. 4 Circuit schematic of one counter stage 
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Another unit cell function is the conditional blocking of 

signal propagation in any direction to model impassable terrain 

such as rivers and canyons. This is important because the 

current (and next generation) resolution of digitized map data 

results in single pixels which contain both rivers and other 

features such as roads. In this case, the unit cell is assigned the 

cost of a road and the outgoing signal is blocked from crossing 

the river, resulting in signal propagation along a road adjacent 

to a river. Such conditional blocking is accomplished with 

another set of four static latches which are preprogrammed to 

either block or transmit the signal emanating from the counter. 

In order to minimize the unit cell size, each of the three 

functional blocks (storage of incoming direction, programmable 

delay, and conditional signal blocking) access four coymon 

data lines when enabled. The enable circuitry and rowlcolumn 

decoder found in each unit cell are implemented primarily with 

NOR logic. 

EXPERIMENTAL RESULTS 

The path planner chip was interfaced to a laboratory PC 

computer through a wirewrap board and plug-in digital 

interface card. The entire chip (address memory, counter, river 

blocking, control logic and VO) is completely functional. It 

was found that the latches require 160 ns to settle, implying a 

terrain programming time for the 600 pixel array of less than 

300 ps. A separate counter test circuit was successfully 

clocked at 8.33 MHz, limited by the test station. The array can 

be operated in two modes: single step and continuous. In the 

former, the chip is clocked via the PC, and the actual signal 

propagation on the chip can be monitored on the PC screen. 

An example of signal propagation through the array is given by 

the sequence of photos in Fig. 5. In the continuous mode, a 

function generator supplies a square wave input to an 

nonoverlapping clock generator located on the wire-wrap board 

which in turn clocks the counter. The chip was tested at 

frequencies up to 7 MHz in this mode, resulting in typical path 

determination times of under 250 ps. For a typical terrain cost 

map, signal propagation through the array required 2550 clock 

cycles, so that the entire signal propagation phase required only 

360 ps at a 7 MHz clock rate. Fig. 6 displays the original map 

with a typical lowest cost path shown in white. 



Fig. 5 Signal propagation through array shown in white on map background (black indicates road): a) after 450 

clock cycles, b) after 500 clock cycles, c) after 750 clock cycles, and d) after 1250 clock cycles. 
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Fig. 6 A typical lowest cost path found by chip. 

CONCLUSION 

In summary, the first single-chip fine grain parallel 

processor array to perform path planning over complex terrain 

has been demonstrated. The 24 x 25 array of digital processors 

has been operated at frequencies up to 7 MHz, providing best 

(fastest) route determination in under a millisecond. This 

corresponds to a four order of magnitude speed-up over current 

software approaches. Full functionality of this first generation 

research chip paves the way for the implementation of large 

arrays (e.g. 1024 x 1024) and chips with increased 

functionality. Both these avenues are currently being pursued. 

A summary of the chip characteristics is given in Table 1. 
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Table I IC Characteristics 

Chip Architecture: 

Maximum Clock Frequency: 7 MHz 

Equivalent Operations per 6 billion 
second: 

Origination Nodes: one or multiple 

Cost Dynamic Range: 256:l 

Process: 2 iim CMOS 

Unit Cell (Processor) Size: 

IC Size: 

24 x 25 digital processor array 

296 pm x 330 pm 

7.9 mm x 9.2 mm 
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