
PARALLEL PROCESSOR ARRAY FOR HIGH SPEED PATH PLANNING

S.E. Kemeny, T.J. Shaw, R.H. Nixon, E.R. Fossum

Jet Propulsion LaboratoryKalifornia Institute of Technology

4800 Oak Grove Dr., Pasadena, CA 91 109

ABSTRACT

The first integration of a 24 x 25 array of processors

for high speed optimal path planning is reported. Based on

programmed terrain costs (traversal time), the IC determines,

in parallel, the fastest routes from a selected starting point(s)

to all other points on a given tcrrain. The chip has hQen

successfully tested at a 7 MHz clock frequency, with typical

path determination requiring 230 l is, resulting in a four order

of magnitude speed-up over currmt sofhvare-hasQd shortmt-

route techniques.

INTRODUCTION

For a given terrain to be traversed, it is computationally

intensive to determine the fastest route between two points, and

for defense or civilian emergency dispatching applications,

computation time is critical. This paper reports the integration

of a 24 x 25 random access array of digital processors which

are programmed to model a given terrain and determine the

fastest (lowest cost) path between any points on the terrain at

very high speed (milliseconds for arrays up to 512 x 512). The

primary purpose of this research chip is to demonstrate high

speed path planning capability for tactical mobility analysis in

battlefield scenarios. However such high speed automated path

planning will find utility in a variety of settings such as

autonomous vehicle navigation, intelligent vehicle highway

systems, evacuation and rescue planning, and police and

transportation dispatching.

Currently, the only tools available to assist in path

planning are iiiplemented in software. These approaches can
be slow, with best path determination typically requiring

seconds to minutes for terrain sizes varying from 64 x 64 to

512 x 512 pixels.' Through the VLSI implementation of a fine

grain parallel architecture, in which every terrain pixel is

represented by a corresponding processor, the inherent

parallelism of the problem can be exploited and extremely fast

path determination can be realized. In such an architecture, the

only processor communication required is between nearest

neighbors so that processor communication overhead is

virtually eliminated. This is in contrast to conventional parallel

computers, where even with proper parallel decomposition of

the problem, processor communication overhead is often a
severe speed bottleneck. In this paper, the first parallel

processor IC for route planning over complex terrain is

reported.

ARRAY ARCHITECTURE AND OPERATION

The path planner architecture, shown schematically in

Fig. 1, consists of a 24 x 25 array of unit cells (processors)

which communicate with their nearest neighbors and are

randomly accessed by 5-bit row and column decoders located

adjacent to the array. The IC is implemented in a single-poly,

double-metal 2 pm CMOS n-well process, utilizing a full

custom layout. The overall chip area is 9.2 mm x 7.9 mrn. A

photograph of the chip is shown in Fig. 2.

In order to determine the fastest routes from a selected

starting point(s) to all other points on a given terrain, each unit

cell corresponds to a terrain pixel which has been

preprogrammed with the cost (i.e. delay) of traversing that

pixel. Operation begins with the selection of a path origination

pixel@) which sends out a signal to its north, south, east and

6.5.1
IEEE 1992 CUSTOM INTEGRATED CIRCUITS CONFERENCE

R
0
W

D
e
C
0
d
e
r

I 4 4

Unit Unit Unit

4 4

Column Decoder

Fig. 1 Block diagram of IC architecture

Fig. 2 IC photograph.

west neighbors. Each neighbor delays the signal by a preset

time (programmable cost), after which it broadcasts a signal to

each of its four neighbors. One of 256 costs (delays) can be

selected. When a signal is received, the incoming signal

direction is stored and further inputs to the cell are disabled.

This results in a signal wavefront propagating radially outward

from the originating pixel that is then distorted by the varying

delays encountered in the array. When signal propagation

through the entire array is complete, any destination node may

be queried and the minimum path between it and the

origination node is found by retracing the direction stored in

each unit cell. Thus, determination of the fastest paths through

a complex terrain (modelled by 256 cost levels) is realized.

This is in contrast to the simpler task of maze solving or wire

routing, in which the processors would be programmed with

binary costs, i.e. the pixel is either blocked or open. A 4 x 4

array of such binary processors and later a 4 x 8 array which

used the discharge of a capacitor to provide an additional cost

(blocked, not blocked and slow) have been previously reported.’

In addition to the lack of available cost levels, another

drawback of this approach is the uncontrolled cost

nonuniformity associated with varying capacitor discharge times

across the array. In the approach reported here, the all-digital

implementation leads to perfect cost uniformity across the

array.

In addition to finding the fastest paths from one

origination pixel to all possible destinations, multiple starting

pixels can be selected, with signal propagation emanating from

each source and stopping at the boundary between signal

wavefronts. This feature is useful in battlefield scenarios where

an analyst can model the progress of different forces across the

terrain. In addition, when any destination node is queried, the

minimum path between it and the nearest source pixel is

displayed, which provides valuable information for rescue

operations.

Unit Cell

In order to implement signal propagation and path

retracing in the array, each unit cell must perform two main

functions: programmable delay and storage of the incoming

direction. The former is implemented with a programmable

counter and the latter with a set of static latches. A block

diagram of the unit cell is shown in Fig. 3 and occupies

296 pm x 330 pm. Signal propagation through the array,

controlled by variable unit cell delays, is implemented by

presetting an 8-bit ripple down-counter in each cell to one of

its 256 possible values. When triggered by an incoming signal

the counter decrements down to zero that in turn triggers the

broadcast of an outgoing signal to each of its nearest neighbors.

6.5.2

W
L
N
S
E
W

*
DELAY COST (CONDITIONAL RIVER BLOCKING)

-
@1 (b*

Fig. 3 Block diagram of unit cell processor.

Each counter stage is based on a static latch configuration,

shown in Fig. 4. To eliminate the need for an 8-input NAND

gate, nine (rather than eight) counter stages are utilized to

achieve the 256 delay resolution. In order to implement the

path retracing function in the array, four static cross-coupled

latches are used to store the incoming signal direction. They

can be read out at any time, even during signal propagation

through the array. A four input NOR gate is triggered if any

of the latches are set, that in turn disables the static latches

from receiving further input.

Set

Data in

VDD
T Reset

Fig. 4 Circuit schematic of one counter stage

~

6.5.3

Another unit cell function is the conditional blocking of

signal propagation in any direction to model impassable terrain

such as rivers and canyons. This is important because the

current (and next generation) resolution of digitized map data

results in single pixels which contain both rivers and other

features such as roads. In this case, the unit cell is assigned the

cost of a road and the outgoing signal is blocked from crossing

the river, resulting in signal propagation along a road adjacent

to a river. Such conditional blocking is accomplished with

another set of four static latches which are preprogrammed to

either block or transmit the signal emanating from the counter.

In order to minimize the unit cell size, each of the three

functional blocks (storage of incoming direction, programmable

delay, and conditional signal blocking) access four coymon

data lines when enabled. The enable circuitry and rowlcolumn

decoder found in each unit cell are implemented primarily with

NOR logic.

EXPERIMENTAL RESULTS

The path planner chip was interfaced to a laboratory PC

computer through a wirewrap board and plug-in digital

interface card. The entire chip (address memory, counter, river

blocking, control logic and VO) is completely functional. It

was found that the latches require 160 ns to settle, implying a

terrain programming time for the 600 pixel array of less than

300 ps. A separate counter test circuit was successfully

clocked at 8.33 MHz, limited by the test station. The array can

be operated in two modes: single step and continuous. In the

former, the chip is clocked via the PC, and the actual signal

propagation on the chip can be monitored on the PC screen.

An example of signal propagation through the array is given by

the sequence of photos in Fig. 5. In the continuous mode, a

function generator supplies a square wave input to an

nonoverlapping clock generator located on the wire-wrap board

which in turn clocks the counter. The chip was tested at

frequencies up to 7 MHz in this mode, resulting in typical path

determination times of under 250 ps. For a typical terrain cost

map, signal propagation through the array required 2550 clock

cycles, so that the entire signal propagation phase required only

360 ps at a 7 MHz clock rate. Fig. 6 displays the original map

with a typical lowest cost path shown in white.

Fig. 5 Signal propagation through array shown in white on map background (black indicates road): a) after 450

clock cycles, b) after 500 clock cycles, c) after 750 clock cycles, and d) after 1250 clock cycles.

6.5.4

Fig. 6 A typical lowest cost path found by chip.

CONCLUSION

In summary, the first single-chip fine grain parallel

processor array to perform path planning over complex terrain

has been demonstrated. The 24 x 25 array of digital processors

has been operated at frequencies up to 7 MHz, providing best

(fastest) route determination in under a millisecond. This

corresponds to a four order of magnitude speed-up over current

software approaches. Full functionality of this first generation

research chip paves the way for the implementation of large

arrays (e.g. 1024 x 1024) and chips with increased

functionality. Both these avenues are currently being pursued.

A summary of the chip characteristics is given in Table 1.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful technical

discussions with H. Langenbacher, B. Minch, T. Brown, D.

Kerns, S. Eberhardt, and A. Thakoor during the course of this

work. Special thanks go to D. Kerns for his effort on a

previous analog path planner design and to B. Minch who

wrote the original software interface for operation of the path

planner chip. The research described in this paper was

performed at the Center for Space Microelectronics

Technology, Jet Propulsion Laboratory, California Institute of

Technology, under contract with the National Aeronautics and

Space Administration and was jointly sponsored by the ASAS

Program Office, the Defense Advanced Research Projects

Agency, and the Naval Surface Warfare Center.

Table I IC Characteristics

Chip Architecture:

Maximum Clock Frequency: 7 MHz

Equivalent Operations per 6 billion
second:

Origination Nodes: one or multiple

Cost Dynamic Range: 256:l

Process: 2 iim CMOS

Unit Cell (Processor) Size:

IC Size:

24 x 25 digital processor array

296 pm x 330 pm

7.9 mm x 9.2 mm

REFERENCES

T. Kreitzberg, T. Barragy, and N. Bryant, "Tactical

Movement Analyzer: A Battlefield Mobility Tool,"

h o c . Joint Service Data Fusion Symposium, Laurel,

MD, 1990.

C.R. Carroll, "A Neural Processor for Maze Solving,"

in C. Mead and M. Ismail, Eds., Analog VLSI

Implementation of Neural Systems, Kluwer Academic

Publishers, Boston (1989).

6.5.5

